TLR2 Ligands Induce NF-κB Activation from Endosomal Compartments of Human Monocytes
نویسندگان
چکیده
Localization of Toll-like receptors (TLR) in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.
منابع مشابه
TRAM is required for TLR2 endosomal signaling to type I IFN induction.
Detection of microbes by TLRs on the plasma membrane leads to the induction of proinflammatory cytokines such as TNF-α, via activation of NF-κB. Alternatively, activation of endosomal TLRs leads to the induction of type I IFNs via IFN regulatory factors (IRFs). TLR4 signaling from the plasma membrane to NF-κB via the Toll/IL-1R (TIR) adaptor protein MyD88 requires the TIR sorting adaptor Mal, w...
متن کاملSurface-expressed TLR6 participates in the recognition of diacylated lipopeptide and peptidoglycan in human cells.
Recognition of microbial components by TLR2 requires cooperation with other TLRs. TLR6 has been shown to be required for the recognition of diacylated lipoproteins and lipopeptides derived from mycoplasma and to activate the NF-kappaB signaling cascade in conjunction with TLR2. Human TLR2 is expressed on the cell surface in a variety of cells, including monocytes, neutrophils, and monocyte-deri...
متن کاملMFHAS1 Is Associated with Sepsis and Stimulates TLR2/NF-κB Signaling Pathway Following Negative Regulation
Malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) has a potential immunoregulatory role dependent on Toll-like receptors (TLRs). TLR2, associated with deleterious systemic inflammation, cardiac dysfunction, and acute kidney injury, acts synergistically in sepsis. The role of MFHAS1 in targeting TLR2 involved in sepsis has not been examined thus far. This study aimed to examine the re...
متن کاملThe role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules.
Inflammatory responses are central to the pathogenesis of diabetic nephropathy. Toll-like receptors (TLRs) are ligand-activated membrane-bound receptors which induce inflammatory responses predominantly through the activation of NF-κB. TLR2 and 4 are present in proximal tubular cells and are activated by endogenous ligands upregulated in diabetic nephropathy, including high-mobility group box-1...
متن کاملNF-κB Links TLR2 and PAR1 to Soluble Immunomodulator Factor Secretion in Human Platelets
The primary toll-like receptor (TLR)-mediated immune cell response pathway common for all TLRs is MyD88-dependent activation of NF-κB, a seminal transcription factor for many chemokines and cytokines. Remarkably, anucleate platelets express the NF-κB machinery, whose role in platelets remains poorly understood. Here, we investigated the contribution of NF-κB in the release of cytokines and sero...
متن کامل